The definition of new wireless LAN standards is a continuous process for creating, as well as improving applications and for making them more secure.
The best-known wireless LAN standards by IEEE are certainly 802.11n for wireless LAN applications up to 600 Mbit/s and of course the 802.11ac standards which have recently been introduced into the market, allowing applications up to 6.7 Gbps. Furthermore, this new standard exploits the streams in use more effectively (key word multi-user MIMO).
Wi-Fi HaLow
Wi-Fi HaLow with IEEE 802.11ah is defined by the terms low-power and long range. This standard will no longer use the usual 2.4 and 5 GHz frequency bands but a license free band below 1 GHz. The respective frequency band is country-specific. In Europe, the frequency range between 868 and 868.6 is reserved for 802.11ah. Due to the significantly smaller frequency used by the mentioned standard compared to the current 2.4 GHz, the free space loss is considerably lower, allowing double range compared to 2.4 GHz. Moreover, the new standard will penetrate walls, ceilings or similar obstacles much more easily. A more detailed look into the new standard reveals elements which are well-known from the .11ac standard, such as multi-user MIMO and single-user beamforming. Also the modulation types are already known, DPSK (differential phase shift keying) and QPSK (quadrature phase shift keying) range between 16 and 256 QAM (quadrature amplitude modulation).
Unfortunately, only 1 MHz and 2MHz radio channels are planned for the new .11ah standard. The .11ac standard defines channels with a width of 20, 40, 80 and 160 MHz. Thus, even though the range of .11ah devices will be good, the transmission rates are more geared towards applications with lower transmission rates. The small channel bandwidth enables low power consumption, thus, the new standard is perfectly suitable for battery-powered devices. Marketing strategies for the new standard focus on applications in this context. Therefore, 802.11ah is the standard used for IoT (Internet of Things), Smart Home, connected car applications, digital healthcare and many other applications.
The standard has only just been approved and published recently on 4th January 2016. It will therefore be a while until the first .11ah devices are offered on the market. Moreover, in order to guarantee an interoperability between different manufactures, the WiFi Allicance offers a certification program for 802.11ah-based devices.
ZigBee , the alternative
For those who do not want to wait so long, ZigBee can also be a very interesting alternative and it is also designed for high ranges and low data rates. Zigbee operates on the 2.4 GHz band, it is already available and has an attractive price. Indeed, numerous applications in home automation and industry are in use, thanks to ZigBee.
I am curious to see what will actually happen. Will the new .11ah standard eventually establish itself or will it only be used in niche applications. It will definitely take some more time until the 802.11ah is put into practice. However, the constantly increasing demands for wireless LAN bandwidth make this technology a very promising and interesting topic and will continue to draw our attention in the future. As an innovative manufacturer of wireless LAN devices, Teldat is of course looking forward to the future developments.